

Eton Wick C of E First School

Calculation Policy

This policy supports the White Rose maths programme used throughout the school.

Progression within each area of calculation is in line with the programme of study in the 2014 National Curriculum.

This calculation policy should be used to support children to develop a deep understanding of number and calculation. This policy has been designed to teach children through the use of concrete, pictorial and abstract representations.

Concrete representation— a pupil is first introduced to an idea or skill by acting it out with real objects. This is a 'hands on' component using real objects and is a foundation for conceptual understanding.

Pictorial representation – a pupil has sufficiently understood the 'hands on' experiences performed and can now relate them to representation, such as a diagram or picture of the problem.

Abstract representation—a pupil is now capable of representing problems by using mathematical notation, for example $12 \times 2 = 24$.

It is important that conceptual understanding, supported by the use of representation, is secure for all procedures. Reinforcement is achieved by going back and forth between these representations.

Objective & Strategy	Concrete	Pictorial	Abstract
Combining two parts to make a whole: part- whole model	Use part part whole model. Use cubes to add two num- bers together as a group or in a bar.	3 yart yhole 2 nurr, bese pictures to add two num- bers together as a group or in a bar.	4 + 3 = 7 10= 6 + 4 Use the part-part whole diagram as shown above to move into the abstract.
Regrouping to make 10. This is an essential skill for column addition later.	6 + 5 = 11 2 more than 5.	Start at the larger number on the number line and count on in ones or in one jump to find the answer. 3 + 9 =	7 + 4= 11 If I am at seven, how many more do I need to make 10. How many more do I add on now?
Represent & use number bonds and related subtraction facts within 20	Start with the big- ger number and use the smaller number to make 10. Use ten frame	Use pictures or a number line. Regroup or partition the smaller number using the part part whole model to make 10. 9+5=14 14 +1 $+41$ $+4$ 1 $+41$ $+41$ 1 1 1 1 1 1 1 1 1	Emphasis should be on the language '1 more than 5 is equal to 6.' '2 more than 5 is 7.' '8 is 3 more than 5.'

+

Objective & Strategy	Concrete	Pictorial	Abstract
Adding multiples of ten	50= 30 + 20	tens and tens makes tens	20 + 30 = 50 70 = 50 + 20 $40 + \Box = 60$
Use known number facts	Children explore ways of making numbers within 20	Use representations for base ten. 20 - 20 - 20 - 20 - 20 - 20 - 20 - 20 -	$\Box + 30 = 50$ $\Box + 1 = 16$ 16 - 1 = \Box 1 + $\Box = 16$ 16 - $\Box = 1$
Using known facts	Ted Sam	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3 + 4 = 7 Leads to 30 + 40 = 70 Leads to 300 + 400 + 700 '3 things and 4 things is always 7 things'
Bar model		8 3 + 5 = 8	30 14 16 14 + 16 = 30

+

Objective & Strategy	Concrete	Pictorial	Abstract
Add a two digit number and ones	17 + 5 = 22Use ten frame to make 'magic tenChildren explore the pattern.17 + 5 = 2227 + 5 = 32	Use part part whole and number line to model. 17 + 5 = 22 3 2 20 17 + 3 + 2 20 17 + 2 20	17 + 5 = 22 22 $17 - 5$ 5 Explore related facts $22 = 17 + 5$ $17 + 5 = 22$ $22 = 17 + 5$ $5 + 17 = 22$ $22 = 5 + 17$ $22 - 17 = 5$ $17 = 22 - 5$ $22 - 5 = 17$ $5 = 22 - 17$
Add a 2 digit num- ber and tens	25 + 10 = 35	25 + 30 = 55 $+10 + 10 + 10$ $25 - 35 - 45 - 55$	27 + 10 = 37 27 + 20 = 47 27 + 0 = 57 0 + 30 = 67
Add two 2-digit numbers without bridging.	Explore that the ones digit does not change Model using dienes , place value counters and numicon Dienes and part-part-whole model: 45 + 23 = 68 60 + 8 = 68	$\begin{array}{c} +20 \\ \hline 47 \\ \hline 67 \\ \hline 72 \\ \hline 47 \\ \hline 67 \\ \hline 70 \\ \hline 72 \\ \hline 70 \\ \hline 70 \\ \hline 72 \\ \hline 70 \\ \hline 72 \\ \hline 70 \\ \hline 72 \\ \hline 0 \\ \hline 70 \\ \hline 72 \\ \hline 0 $	25 + 47 20 + 5 40 + 7 20 + 40 = 60 5 + 7 = 12 60 + 12 = 72

ADDITION

+

ADDITION +

ADDITION +

{ ≺

Objective & Strategy	Concrete	Pictorial	Abstract
Add numbers with up to 4 digits	Children continue to use dienes or pv counters to add, exchanging ten ones for a ten and ten tens for a hundred and ten hundreds for a thousand.		2634 + 4517 7141 1 1 Continue from previous work to carry ones, tens and hundreds. Relate to money and measures.

+

Υ4

Objective & Strategy	Concrete	Pictorial
Understand and use arrays	Use objects laid out in arrays to find the answers to 2 lots of 5, 3 lots of 2 etc.	Make and draw representations of arrays to show understanding
Equal/non equal groups	Use real life objects and contexts to examine equal and non-equal groups.	Children make/match representations of real life problems to show equal groups and find the total.
	There are 3 equal groups. There are 5 in each group.	

MULTIPLICATION X

MULTIPLICATION ×

Objective & Strategy	Concrete	Pictorial	Abstract
Use repeated addi- tion for multiplica- tions	Use objects and real life contexts. $ \begin{array}{c} \hline 2+2+2+2+2=10\\ \hline \\ \hline \\ \\ \hline \\ \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	Make and draw representations to show repeated addition There are 3 sweets in one bag. How many sweets are in 5 bags altogether?	Create number sentences using repeated addition to match representations. $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
Relate repeated ad- dition to multiplica- tion using the x sign.	There are 9 altogether. Write multiplication sentences to match repeated addition.	Children make and draw representa- tions and record both an addition sen- tence and a multiplication sentence. (2)	Write multiplication sentences to match repeated addition, without the support of representations. 2 + 2 + 2 + 2 + 2 = 10 $5 \times 2 = 10$
	2 2 2 2+2+2+2 4×2	6 x 1 + 6	

MULTIPLICATION X

Objective & Strategy	Concrete	Pictorial	Abstract
Aultiplication is ommutative	<text></text>	Use representations of arrays to show different calculations and explore commutativity. $3 \times 2 = 10$ $5 \times 2 = 10$ 5 groups of 2 $2 groups of 52 five times$ $5 two times3 \times 2 = 10 5 \times 2 = 105 \times 2 = 10 5 \times 2 = 10 5 \times 2 = 105 \times 2 = 10 5 \times 2$	$12 = 3 \times 4$ $12 = 4 \times 3$ Use an array to write multiplication sentences and reinforce repeated addition. 000000 5 + 5 + 5 = 15 3 + 3 + 3 + 3 + 3 = 15 $5 \times 3 = 15$ $3 \times 5 = 15$

MULTIPLICATION X

MULTIPLICATION X

Objective & Strategy	Concrete	Pictorial	Abstract
Multiplying 2-digit by 1 digit using par- titioning (distributive law)	Show the links with arrays to illustrate the V partitioning 4 rows of 10 4 rows of 3 Move onto base ten to move towards a more compact method. 4 rows of 13 Move on to place value counters to show how we are finding groups of a number. We are multiplying by 4 so we need 4 rows	24×3=72	$13 \times 4 = 52$ $4 \times 10 = 40$ $4 \times 3 = 12$ $40 + 12 = 52$ Grid Method – as pictorial but without the place value counters

Y3 MULTIPLICATION X

Objective & Strategy	Concrete	Pictorial	Abstract
Understand the 6, 7, 9, 11 and 12 times table Examples given for the 7 x are applicable for all	Children use representations which show groups of 7 including real life contexts.	Linear models show jumps of 7.	There are 14 players. 2 × 7 = 14 7 × 2 = 14

MULTIPLICATION X

MULTIPLICATION ×

/4

Objective & Strategy	Concrete	Pictorial	Abstract
Multiply 3 digit numbers by 1 digit. (no ex- change)	Use place value counters to show how we are finding groups of a number. We are multiply- ing by 3 so we need 3 rows 123 x3 = 369 hundreds ones Image: Color of the second stress o	Children can represent their work with place value counters by drawing place value counters or Dienes.	Grid method or Short division using pv counters
	Image: Weight of the second		
Multiply 3 digit numbers by 1 digit. (with ex- change)	bundreds bins ones Image:	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Grid method or Short division using pv counters
	Regroup ten ones to make a new ten.	H T D	
	600 + 70 + 2 +672	500 + 20 + 2 +522	

Objective & Strategy	Concrete	Pictorial	Abstract
Understanding the Inverse			3 x 4 = 12 12 ÷ 4 = 3
	$\begin{array}{c} \bigcirc \bigcirc$	Δ	4 x 3 = 12 12 ÷ 3 = 4
		$\begin{vmatrix} 4 & 2 \\ \hline & \times & = \\ \hline & \times & = \\ \hline & \times & = \\ \hline & \div & = \\ \hline & \div & = \\ \hline & \div & = \\ \end{vmatrix}$	$2 \times 4 = 8$ $4 \times 2 = 8$ $8 \div 2 = 4$ $8 \div 4 = 2$ $8 = 2 \times 4$ $8 = 4 \times 2$ $2 = 8 \div 4$ $4 = 8 \div 2$ Show all 8 related fact family sentences.

Objective & Strategy	Concrete	Pictorial	Abstract
Interpreting divi- sion with remainders.	Bracelets are made using 4 beads. There are 23 beads. How many bracelets can be made? How many beads left over?	Bar model representations may be used.	23 ÷ 4 = 5 r 3
Interpreting divi- sion with	4 scouts can fit in each tent. How many tents needed for 30 scouts?		30 ÷ 4 = 7 r 2
remainders.		30 4 4 4 4 4 4 2	8 tents are needed. Discuss with pupils the need to round up in this context.

