Eton Wick C of E First School

Calculation Policy

This policy supports the White Rose maths programme used throughout the school.
Progression within each area of calculation is in line with the programme of study in the 2014 National Curriculum.
This calculation policy should be used to support children to develop a deep understanding of number and calculation. This policy has been designed to teach children through the use of concrete, pictorial and abstract representations.

Concrete representation - a pupil is first introduced to an idea or skill by acting it out with real objects. This is a 'hands on' component using real objects and is a foundation for conceptual understanding.

Pictorial representation - a pupil has sufficiently understood the 'hands on' experiences performed and can now relate them to representation, such as a diagram or picture of the problem.

Abstract representation-a pupil is now capable of representing problems by using mathematical notation, for example $12 \times 2=24$.

It is important that conceptual understanding, supported by the use of representation, is secure for all procedures. Reinforcement is achieved by going back and forth between these representations.

Objective, Strategy	Concrete	Pictorial	Abstract
Comparing Objects, groups of objects	People's height, distance, mass. Use of balancing scales using numicon to show equivalence, < > Comparing multiple objects Use of concrete materials eg. Compare bears, jewels, cubes etc to create groups of different sizes to compare		
Using < > and =	Use a multilink staircase in two colours		Use variation with missing boxes and missing symbols. $\begin{array}{ll} 3 \bigcirc 4 & 4>\square \\ 2 \bigcirc 2 & \square<6 \end{array}$
Finding one more, finding one less			One more/less sentences - example one: 1 more than 3 is \square 1 less than 2 is \square 1 more than \square is 1 1 less than \square is 1

Objective \& Strategy

Exchange ten ones for a ten. Model using numicon and $p v$ counters.

Objective \& Strategy	Concrete	Pictorial	Abstract
Represent and use number bonds and related subtraction facts within 20 Part-Part-Whole model	Link to addition. If 10 is the whole and 6 is one of the parts, what's the other part? $10-6=4$	Use pictorial representations to show the part.	Move to using numbers within the part whole model. $\begin{aligned} & 12-5=7 \\ & 12-7=5 \\ & 7=12-5 \\ & 5=12-7 \end{aligned}$
Subtract by making ten	15-9 Make 15 on the ten frame. Take 5 away to make ten, then take 4 more away so that you have taken 9.	$15-9$ Jump back 5 first, then another 4 . Use ten as the stopping point.	$16-9$ How many do we take off first to get to 10? How many left to take off?
Compare numbers by finding the difference.	There are 2 more red cars than blue cars. There are 2 more pencils than erasers.	 $5-3=2$ Use a number line to count on..	Hannah has 12 sweets and her sister has 5 . How many more does Hannah have than her sister?

Objective \& Strategy	Concrete	Pictorial	Abstract
Subtracting by making 10	Make 15 on the $15-9=$ ten frame. Take 5 away to make ten, then take 4 more away so that you have taken 9.	$15-9=$ Jump back 5 first, then another 4 . Use ten as the stopping point.	$16-9=$ How many do we take off first to get to 10? How many left to take off?
Counting on to next ten Progression should be crossing one ten, crossing more than one ten, crossing the hundreds.	$34-28=$ 34-28 Use a bead bar or bead strings to model counting to next ten and the rest. 28 to 30 is 2,30 to 34 is 4 . So, $34-28=6$	Use a number line to count on to next ten and then the rest. Begin with bead line, move to landmarked line then to ENL.	$\begin{aligned} & \quad 93-76=17 \\ & 76 \quad \longrightarrow 80=4 \\ & 80 \quad \longrightarrow 93=13 \\ & 13+4=17 \end{aligned}$
Subtractions as difference			The difference between 24 and 16 is 8 .

Objective \& Strategy	Concrete	Pictorial	Abstract
Subtracting a multiple of 10	3 $32-10=22$ Children use dienes, PV counters or Numicon. They remove the correct number of tens		$\begin{aligned} & 64-10=\square \\ & 64-20=\square \\ & 64-30=\square \\ & 64-\square=24 \\ & \square-50=14 \end{aligned}$
Subtract a single digit from a two digit number No regrouping	Explore that 9-3=6 so 29-3=26 etc	$9-3=6$ $19-3=16$	$\begin{aligned} & 9-3=6 \\ & 19-6=13 \\ & 29-6=23 \text { etc } \end{aligned}$
Regroup a ten into ten ones	Use a PV chart to show how to change a ten into ten ones, use the term 'take and make'.	$20-4=16$	$20-4=16$
Partitioning to subtract without regrouping.	$34-13=21$ Use Dienes to show how to partition the number when subtracting without regrouping.	$43-21=22$ Children draw representations of Dienes and cross off.	$43-21=22$

Objective \& Strategy	Concrete	Pictorial	Abstract
Column subtraction without regrouping (friendly numbers)	Use base 10 or Numicon to model	 Draw representations to support understanding	$\begin{gathered} 47-24=23 \\ -40+7 \\ -20+4 \\ 20+3 \\ \hline \end{gathered}$ Intermediate step may be needed to lead to clear subtraction understanding.
Column subtraction with regrouping	 Begin with base 10 or Numicon. Move to pv counters, modelling the exchange of a ten into ten ones.		

Objective \& Strategy	Concrete	Pictorial	Abstract
Subtracting tens and ones Subtract with up to 4 digits. Introduce decimal subtraction through context of money	234-179 Model process of exchange using Numicon, base ten and then move to PV counters.	Children to draw pv counters and show their exchange-see Y3	Use the phrase 'take and make' for exchange

Strategy

Double numbers

to 10 \begin{tabular}{l}

Use practical activities using manipulatives in-
cluding cubes and Numicon to demonstrate
doubling

Counting in groups

of 2
\end{tabular}

Objective \&
Strategy
Understand and use
arrays
Use objects laid out in arrays to find the answers to 2 lots of 5 , 3 lots of
Equal/non equal
groups

Objective \& Strategy	Concrete	Pictorial	Abstract
Use repeated addition for multiplications	Use objects and real life contexts. There are 5 groups of 2 . There are 10 socks altogether. There are 3 groups of 3 . There are 9 altogether.	Make and draw representations to show repeated addition There are 3 sweets in one bag. How many sweets are in 5 bags altogether? Use bar models for representations of repeated additions.	Create number sentences using repeated addition to match representations. 3 3 3 3 $3+3+3+3=12$
Relate repeated addition to multiplication using the x sign.	Write multiplication sentences to match repeated addition.	Children make and draw representations and record both an addition sentence and a multiplication sentence.	Write multiplication sentences to match repeated addition, without the support of representations. $\begin{aligned} & 2+2+2+2+2=10 \\ & 5 \times 2=10 \end{aligned}$

Strategy

Understand the 2,5 and 10 times table

Use objects and real life contexts for multiples of 2,5 and 10

$$
3 \times 2=6
$$

$$
6=3 \times 2
$$

(20)

$$
3 \times 10=30
$$

㥸㽗

Objective \& Strategy	Concrete	Pictorial	Abstract
Multiplication is commutative	Create arrays using counters and cubes and Numicon. Pupils should understand that an array can represent different equations and that, as multiplication is commutative, the order of the multiplication does not affect the answer.	Use representations of arrays to show different calculations and explore commutativity. 5 groups of 2 2 groups of 5 2, five times 5, two times	$\begin{aligned} 12 & =3 \times 4 \\ 12 & =4 \times 3 \end{aligned}$ Use an array to write multiplication sentences and reinforce repeated addition. $\begin{aligned} & 5+5+5=15 \\ & 3+3+3+3+3=15 \\ & 5 \times 3=15 \\ & 3 \times 5=15 \end{aligned}$

 Strategy	Concrete	Pictorial	Abstract
Understand the 3 times table	Count in three using objects and representations of multiples of 3 . 3 (3) (3) 3		There are 12 wheels. $\begin{aligned} & 4 \times 3=12 \\ & 3 \times 4=12 \end{aligned}$

 Strategy	Concrete	Pictorial						Abstract
Understand the 4 times table	We can double our 2 times table to get the 4 times table Pupils revise 2 times table from year 2 and make link that this can be doubled to obtain 4 times table. How many wheels? Count in groups of 4 . (4) (4) (4) (4)			4	$\frac{2}{4}$		2	$\begin{array}{r} 12 \times 2=24 \\ 6 \times 2=24 \end{array}$ There are 20 wheels. $\begin{aligned} & 5 \times 4=20 \\ & 4 \times 5=20 \end{aligned}$
Understand the 8 times table	We can double our 4 times table to get the 8 times table 频		4	4		4	4	$\begin{aligned} & 6 \times 4=24 \\ & 3 \times 8=24 \end{aligned}$

Objective \& Strategy	Concrete	Pictorial	Abstract
Multiplying 2-digit by 1 digit using partitioning (distributive law)	Show the links with arrays to illustrate the Move onto base ten to move towards a more compact method. 4 rows of 13 Move on to place value counters to show how we are finding groups of a number. We are multiplying by 4 so we need 4 rows	Children can represent their work with place value counters in a way that they understand. They can draw the counters using colours to show different amounts or just use the circles in the different columns to show their thinking as shown below.	$\begin{array}{r} 13 \times 4=52 \\ 4 \times 10=40 \\ 4 \times 3=12 \\ 40+12=52 \end{array}$ Grid Method - as pictorial but without the place value counters

 Strategy	Concrete	Pictorial	Abstract
Understand the $6,7,9,11$ and 12 times table Examples given for the $7 x$ are applicable for all	Children use representations which show groups of 7 including real life contexts.	Linear models show jumps of 7 .	There are 14 players. $\begin{aligned} & 2 \times 7=14 \\ & 7 \times 2=14 \end{aligned}$

Objective \& Strategy	Concrete	Pictorial	Abstract
Understanding the commutative law.	"Three groups of five is equal to five groups of three."		$\begin{aligned} & 3 \times 5=15 \\ & 5 \times 3=15 \\ & 5 \times 3=3 \times 5=15 \\ & 15 \div 3=5 \\ & 15 \div 5=3 \end{aligned}$
Understanding the distributive law			$4 \times 5=3 \times 5+5=20$ $4 \times 5=5 \times 5-5=20$

 Strategy	Concrete	Pictorial	Abstract
Multiply 3 digit numbers by 1 digit. (no ex-	Use place value counters to show how we are finding groups of a number. We are multiplying by 3 so we need 3 rows	Children can represent their work with place value counters by drawing place value counters or Dienes.	Grid method or
change)	$123 \times 3=369$ Add up each column, starting with the ones.		
Multiply 3 digit numbers by 1 digit. (with exchange)	224×3 Regroup ten ones to make a new ten. $\begin{array}{rrr} 600 & +70 & + \\ & +672 \end{array}$	261×2 $\begin{array}{rc} 500 & 20 \\ & +522 \end{array}$	Grid method or Short division using pv counters

Objective \&
Strategy
Understand division
as sharing into equal
groups

| |
| :--- | :--- | :--- |
| Strategy |
| Division as sharing |
| (partitive) |

